Equivalent Theories of Liquid Crystal Dynamics
نویسندگان
چکیده
There are two competing descriptions of nematic liquid crystal dynamics: the Ericksen-Leslie director theory and the Eringen micropolar approach. Up to this day, these two descriptions have remained distinct in spite of several attempts to show that the micropolar theory includes the director theory. In this paper we show that this is the case by using symmetry reduction techniques and introducing a new system that is equivalent to the Ericksen-Leslie equations and includes disclination dynamics. The resulting equations of motion are verified to be completely equivalent, although one of the two different reductions offers the possibility of accounting for orientational defects. After applying these two approaches to the ordered micropolar theory of Lhuiller and Rey, all the results are eventually extended to flowing complex fluids, such as nematic liquid crystals.
منابع مشابه
Axisymmetric Vibrations in Micropolar Thermoelastic Cubic Crystal Plate Bordered with Layers or Half Spaces of Inviscid liquid
In present study is concerned with the propagation of axisymmetric vibrations in a homogenous isotropic micropolar thermoelastic cubic crystal plate bordered with layers or half spaces of inviscid liquid subjected to stress free boundary conditions in context of Lord and Shulman (L-S) and Green and Lindsay (G-L) theories of thermoelasticity. The secular equations for symmetric and skew-symmetri...
متن کاملImprovement the reflection coefficient of Waveguide-Fed Phased-Array Antenna utilizing Liquid Crystal
Abstract— This work investigates the improvement of the active reflection coefficient of waveguide-fed phased-array antenna using liquid crystal layers. The anisotropy properties of liquid crystal layer can be employed to eliminate blind scan angle and improve the wide angle impedance matching of the waveguide-fed phased array antennas. The authors have expressed the modal analysis of the waveg...
متن کاملSwitching hydrodynamics in liquid crystal devices: a simulation perspective.
In liquid crystal devices it is important to understand the physics underlying their switching between different states, which is usually achieved by applying or removing an electric field. Flow is known to be a key determinant of the timescales and pathways of the switching kinetics. Incorporating hydrodynamic effects into theories for liquid crystal devices is therefore important; however thi...
متن کاملTemperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures
Recently, photonic crystals doped with liquid crystal (LC) material havegained much research interest. In this article new ternary one-dimensional photoniccrystal introduced and studied. The liquid crystal layer of 5CB and 5PCH is sandwichedby two dielectric layers. For the first time, we use four structures SiO2/UCF35/CaF2,SiO2/5CB/CaF2, NFK51/UCF35/NPSK53 and NFK51/5CB/NPSK53. The effect ofte...
متن کاملInterfacial Free Energy Controlling Glass-Forming Ability of Cu-Zr Alloys
Glass is a freezing phase of a deeply supercooled liquid. Despite its simple definition, the origin of glass forming ability (GFA) is still ambiguous, even for binary Cu-Zr alloys. Here, we directly study the stability of the supercooled Cu-Zr liquids where we find that Cu64Zr36 at a supercooled temperature shows deeper undercoolability and longer persistence than other neighbouring composition...
متن کامل